
1

Friday, 2006 January 20, 01:01:08
JAW, Wednesday, 2004 November 17, 11:42:48

Vectorial Color
James A. Worthey

11 Rye Court, Gaithersburg, Maryland 20878-1901, USA.
Copyright © 2006 by James A. Worthey

Abstract
A set of orthonormal color matching functions is presented in which the first is an all-positive
achromatic function, the second is red versus green, and the third can be loosely described as
blue versus yellow. The achromatic function, proportional to the familiar y6, is a sum of red and
green cones. The red-green function uses the same red and green cones, but subtracted, with
coefficients so that it is orthogonal to the achromatic one. The third function involves all three
cones, but is primarily a blue sensitivity. Using this basis to compute the tristimulus vectors of
narrow-band lights at unit power gives Jozef Cohen’s Locus of Unit Monochromats, an invariant
shape now graphed in a space where the axes have intuitive meaning. The extreme points of
Cohen’s locus reveal the wavelengths that act most strongly in mixtures, a close approximation
to William Thornton’s Prime Colors. In effect, decades of research converge in three functions
and a vectorial schema, demystifying such issues as color rendering and the selection of additive
primaries.
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Introduction
With regard to things that stimulate our senses, we all know what amplitude

means—usually. A high-amplitude noise SOUNDS LOUD. Summer sunlight looks bright.
When adaptation state is controlled, sensation is often a simple—if nonlinear—function of
physical amplitude. Color mixing is different, and we all know this too. In a color match, lights
add linearly, and the match does not depend on adaptation conditions. Within that context, lights
have a direction and an amplitude in color space. Algebraically, we model the mixing of lights
by adding triplets of numbers. In the usual system, when lights 1 and 2 are superimposed,
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We may speak of the column matrices in Eq. (1) as tristimulus vectors, but vector diagrams and
amplitudes in XYZ space are seldom mentioned.

Jozef Cohen saw that any light can be mapped to a unique function of wavelength, its
fundamental metamer. In turn, fundamental metamers map to vectors in a 3-space. Cohen’s
analysis begins with any valid set of color matching functions, even the highly arbitrary x6, y6, z6,
then leaps to an invariant formulation, retaining the facts of color matching while losing the
arbitrary representation.

In this article, a set of orthonormalized opponent color functions is developed. The
algebra will look different from Cohen’s, but the results agree entirely with his. Like any set of
color matching functions, the orthonormal ones permit a spectral power distribution (471
numbers perhaps) to be reduced to a tristimulus vector, 3 numbers. The components of the
tristimulus vector will have intuitive meaning in terms of color names, and also mathematical
meaning as components of the fundamental metamer.

The main result, the set of three functions, is simple in itself: a set of graphs, or a table of
numbers, to be used in place of other tabulated color matching functions. A method for
generating the functions could be stated in a few sentences, reducing this article to a paragraph
and a set of graphs. In the event, many paragraphs will be used to put the orthonormal cmf’s into
the context of past research and future applications.

Background
Alternate sets of cmf’s. As an arbiter of matches, a set of color matching functions (cmf’s) is
not unique; a new set made by linear transformation of the old set predicts the same matches so
long as the transformation is reversible (see Appendix A). Figure 1 shows an assortment of
cmf’s, all equivalent to the CIE 2° Observer in the color matches that they predict. In Fig. 1a is a
set of color matching functions in the root meaning of the phrase, the matches that the 2°
Observer would make in a visual colorimeter, when the primary lights are narrow bands at 603,
538, 446 nm. In Fig. 1b is a set of cone sensitivities, while in Fig. 1c are the usual functions x6, y6,
z6. Finally, in Fig. 1d are a set of opponent functions, essentially Guth’s 1980 model with the
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functions normalized. Guth started with a set of color matching functions considered more
accurate, but only a little different from the still-official 2° observer, Fig. 1c (see Appendices B
and C). Again, if the only question is whether a light L1 will match a light L2, then the 4 sets of
cmf’s in Fig. 1 will agree on the answer, yes or no.

Superimposing two lights corresponds to adding their tristimulus vectors, and by extension other
concepts such as vector amplitude or decomposition should apply to color stimuli. The benefit of
vectorial ideas is hard to see in the XYZ schema, but will be more apparent with the right choice
of cmfs.

Cone Sensitivities. Consider the sensitivities of the three cone systems1, Fig. 1b. Whatever
stimulus vector amplitude is, it should vanish at the ends of the spectrum and show a local
minimum near 495 nm, where all cone sensitivities are low. We also see why the idea of
amplitude in color mixing is not as simple as it might be. The cone sensitivities overlap! This is
to our benefit in catching plenty of photons and in finely discriminating hues in the red to green
range, but it complicates the discussion of color mixing. Consider, for example, the traditional
instructions for transforming color mixing data to new primaries. If the 3 cone types had non-
overlapping spectral sensitivities, the data would trace out those functions directly. The
wavelengths of peak sensitivity could become the primaries in further experiments. Because of
overlap, we find a more subtle reality in which changing one primary wavelength alters all 3
functions.

To put it another way, all of colorimetry is about overlap. Overlapping cone sensitivities
can be added and subtracted to make the interesting and dissimilar graphs of Figure 1. If non-
overlapping functions were added and subtracted, the results would show a more consistent
resemblance to the underlying cone functions, a qualitatively different situation.

Opponent Colors, etc. Have these issues of amplitude and overlap been addressed before? Yes,
though not with those words, usually. Opponent-color models emphasize the difference between
the overlapping red and green sensitivities, literally subtracting one function from the other, with
some coefficients. Cornsweet showed the role of overlap for a dichromatic eye, by finding a
“spectral locus” of stimuli as wavelength is varied for a light of fixed quantum flux. Cohen’s
“locus of unit monochromats,” though not exactly Cornsweet’s locus, is another graphic whose
shape comes from spectrally overlapping sensitivities.

Color as it is taught. Superimposed in Figure 2 are two sets of color matching functions,
calculated data corresponding to the settings of the idealized 2° observer, in matching a narrow-
band test light by 3 narrow-band primaries. For the solid lines, the primary set is {650, 530,
460 nm}, approximating Wright’s primaries, while the primaries for the dotted functions are
{629, 543, 461 nm}, similar to those used by Guild. The same facts lead to alternate sets of
graphs, an awkward situation. Favoring monotony over mystery, teachers and students may rush
to embrace the standardized XYZ system. However, despite its puzzling features, the mixing of
3 primaries is a model for television and indirectly for other color technologies.

Figure 3 shows the NTSC primaries for color television in relation to the wavelengths of peak
absorption by cones. The peak for red cones is in the yellow, but the red primary—not
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surprisingly—is in the red, or at least in the orange. These facts are well known, but seldom
discussed. The television primaries were chosen by trial and error, a reasonable approach for that
well-defined problem.

In Figure 2, looking to the settings of the red primary, Guild’s primaries had a possible
advantage over Wright’s. That is, Guild needed less power at 629 nm than Wright did in his red
channel at 650 nm, Table 1. In the horizontal dimension, the red setting has its tall peak at about
the same position for either primary set, revealing a wavelength at which the test light acts
strongly. The primaries could perhaps be set to those wavelengths, permitting a matching
experiment at minimum power. Thornton developed this idea in detail [1999 article]. 

Table 1. Observation concerning peaks of the red cmf in Figure 2. The exact locations of the
peaks depend on the green and blue primary wavelengths as well as the red ones. Peak power
is expressed as a multiple of the power in the test wavelength

scientist red primary 8 peak power 8 of peak

Wright 650 nm 3.6 602 nm

Guild 629 1.5 604

Moment of Reflection: Primary Colors
We have seen a puzzle in various forms, which might be called “the question of primary colors.”
Why is the peak wavelength of the red cmf in Fig. 1a so far from the red cone sensitivity peak in
Fig. 1b? In Fig. 3, why did the National Television System Committee, by its trial-and-error
process, put the red television phosphor so far from the red cone peak? In the traditional
presentation of additive color mixing, Fig. 4, why are the primaries red, green and blue, and not
something else? If one is given the cone functions, Fig. 1b, it is easy to infer the cmf’s of Fig. 1a,
with their more-separated red and green peaks. The riddle of primary colors is this: by what
process of cause and effect do the primary colors arise, especially the red primary that is so far
from the red cone peak? If color matching data can be converted from one set of primaries to
another, why are there in fact Prime Colors, a set of primaries that work best?

In Fig. 1a, for the 2-degree observer, the indicated primaries are the Prime Colors, because no
more than unit power of each primary is needed to match the test light [Ref: new Brill &
Worthey article.]. To make a color-matching apparatus, a three-band light, or a three-color video
display, it is a leap in the right direction to set the working primaries close to these Prime Colors,
and historically that is done. One description of Prime Colors is that they act strongly in
mixtures, and in fact, “action in mixtures” is already what color matching experiments measure,
Fig. 1a. The goal now is to make the concept of action in mixtures available for all color
discussions, not only for mixtures of narrow-band primaries. Any tristimulus vector expresses
action in mixtures, but the orthonormal basis will be especially helpful.

Orthonormal Functions
Consider just red and green cones as a system. Color depends on comparison, so we want to
compare red and green cone sensitivities, to find the wavelengths at which they are the most
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different. Let the cone functions, Fig. 1b, be called r, g, and b, and compute r!g. That is, we
want to compare the red and green signals, so with no further thought we subtract them. The
resulting opponent color function, Fig. 5, has positive and negative peaks at 605 nm and 520 nm,
about where prime colors are expected to fall. We are on the right track, but feel some remorse,
because the arbitrary scaling of r and g does affect the result. We then recall that whiteness
sensitivity, the familiar y6, is a sum of red and green sensitivities:

y6 =  0.6372r + 0.3924g   . (2)

(The constants can be found by inverting the matrix in Eq. C2, for example.) For later
convenience, we can then normalize y6 and call that result T1. In fact, T1 = 0.11381y6, but the
important requirement is that +T1*T1, = 1. Then a red-green function can be found that is
orthogonal to the achromatic function. We find the function that is r minus the projection of r
onto T1:

*T2, = *r, ! *T1,+T1*r,   . (3)

Then normalize *T2,:

*T2, ² *T2,/+T2*T2,
1/2     . (4)

(Recall that *f, is function f as a column vector and +g* is function g as a row vector, so that +g*f,
is the inner product of g and f, a single number.) To check that we are on the right track, multiply
Eq. (3) on the left by +T1* to obtain:

+T1*T2, = +T1*r, ! +T1*T1,+T1*r,   . (5)

Since *T1, was normalized, meaning +T1*T1, = 1, the RHS of Eq. (5) = 0, confirming that *T1,,
*T2, are orthogonal, and in fact orthonormal.

So, in any case, *T1, and *T2, are two linear combinations of the red and green cone
sensitivities, orthogonal to one another. One is the achromatic function, proportional to y6, and
the other is a red-green opponent function, Fig. 6. For concreteness,
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though the concepts are more important than the numbers. We can then say that *T2, represents
the other combination of *r, and *g,, independent of the achromatic function, *T1,. The
remaining arbitrariness resides in the choice of *T1, as proportional to y6 for the first
combination. Other choices for the first function would lead to other possibilities for the
orthogonal second function. For the new pair of functions we can write:
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The square matrix expresses a rotation, and it would take only brief algebra to show that if the
old +T1*, +T2* (on the right) are orthonormal, so are the new +T1*, +T2* on the left.

Combining the functions of Fig. 6 into a single plot of T2(8) versus T1(8) gives the spectrum
locus shown in black in Fig. 7. Rotating by 2 = 81.8° gives a pair of functions in which one is
proportional to !r(8) (but normalized), and the other is orthonormal to that red function, leading
to the locus shown in gray. The loci have the same shape, differing only by the rotation. In
summary, if we ask where the overlapping red and green functions are the most different, an
opponent-color function addresses that question but is somewhat arbitrary. Expressing red-green
sensitivity by a pair of orthonormal functions, then plotting one function against the other, leads
to a spectrum locus whose shape is invariant except for rotations and reflections. It is convenient
to use the original T1 and T2, so that T1(8) is the achromatic function.

To review, we sought the wavelengths where the red and green cones are the “most different.” It
then made sense to convert to functions that are the most different—a pair of mutually
orthonormal functions. Plotting the orthonormal functions together—a so-called parametric
plot—gives a 2-dimensional shape. Choosing one of the orthonormal functions fixes the other,
within a minus sign. The remaining freedom is a rotation that does not alter the 2D shape.

The new functions are color matching functions like any of the examples in Fig. 1. A narrow-
band light of wavelength 8 and unit power maps to a vector [T1(8), T2(8)], a point on the locus.
The overlap of red and green sensitivities imposes a constraint which could be represented by
graphing the green cone function versus the red cone function, more or less what Cornsweet
does. Fig. 7 shows the same constraint from overlapping sensitivities, but the orthonormal
representation spreads out the locus and provides us with meaningful axes. In Fig. 8 stimulus
vectors add vectorially. The locus is not a gamut or boundary in the usual sense. When lights of
unit power add, the total vector (using 2 units of power) can extend beyond the locus.

Eq. (3) and (4) above express the method of Gram-Schmidt orthonormalization. Taking blue
cone sensitivity b(8) as the next independent starting function, Eq. (3) can be generalized to
subtract from b(8) its projection onto each of T1(8), T2(8). Normalizing *T3, as in Eq. (4)
completes the calculation, and we have a set of 3 orthonormal color matching functions. In short,

+Ti*Tj, = *ij    , (8)

where *ij is the Kronecker delta, = 1 if i = j, = 0 otherwise. These color matching functions,
graphed in Fig. 9, can be given intuitive descriptions:
1. T1 = achromatic function = 0.11381y6 .
2. T2 = red-green opponent function.
3. T3 = a sort of blue-yellow opponent function, but it has contributions from all three cones, and
as a practical matter is close to being just a blue cone function.

Let the 3 functions be written as columns of a matrix S,

S = [|T1, |T2, |T3,]   . (9)
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(The ket notation, |,, makes explicit that the functions of wavelength are column vectors.) Then
the tristimulus vector V of a light with spectral distribution L is

V =  = STL     . (10)
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Implicit within the matrix multiplication are the expected three sums of products, so that the first

element of V could be written v1 =  , for example.( ) ( )ω λ λ
λ

1∑ L

Now consider a narrow-band light with variable wavelength and a constant one watt of optical
power. When its wavelength is 8, the tristimulus vector is [T1(8) T2(8) T3(8)]T. Varying 8 then
generates a curve in 3-space. (Superscript T denotes transpose, just to make the vector a column
vector.) Fig. 10 shows a static view of a graph that was made in color and 3D with the help of
VRML, the Virtual Reality Modeling Language. The locus is the edge of the colored surface.
Interactive 3D examples are on the author’s web site. See especially the page
http://www.jimworthey.com/jimtalk2004nov.html . Clicking on one of the large static examples
will bring up an interactive picture. The 3-dimensional shape is in fact Jozef Cohen’s “locus of
unit monochromats,” but found by different steps. Cohen showed that orthonormal primaries
lead to the locus of unit monochromats, and his approach via the projector matrix R makes it
clear that the shape is invariant.

The red, green, and blue extreme points of the locus indicate three “longest vectors” at 604, 536,
and 445 nm, explaining why additive primaries usually fall at about those wavelengths. Thinking
in terms of 3-phosphor video, for instance, the role of the green phosphor is to pull mixtures
away from white and towards green, the red phosphor’s role is to pull mixtures towards red.
Within a certain power budget, the designer wants long vectors, and the listed wavelengths fill
the need. The exact wavelengths given are not ideal primaries for all purposes. For example, the
reader may note that 604 nm is an orangish color, not very red. Moving the red primary to a
slightly longer wavelength gives a vector at a greater angle from white or green, a more saturated
red. Moving the primary to 610 or 620 nm imposes a small cost in power that would increase if
the wavelength were shifted further. The motivation for moving the primary beyond 604 nm can
also be seen in Fig. 1a, where the red primary is in fact 603 nm. To the right of the red primary is
a region where the green cmf goes negative, meaning that green is added to the test light to
desaturate it. Moving the red primary to a longer wavelength makes it redder, reducing the
amount of green “desaturant” that is needed. The effect can be seen in the animated color
matching functions found at http://www.jimworthey.com/matchingprime.html .

The all-too-familiar chromaticity (x, y) indicates the direction of tristimulus vectors, losing their
amplitude. Because the vector plot does not discard amplitude, the locus falls into the origin at
the short and long ends of the spectrum. Seen in three dimensions, the surface is interesting but
not intricately folded. Cohen called it “butterfly wings.” Since the T1 axis measures whiteness, it
is logical to think of the T2-T3 plane as the chromatic plane. Projecting a  tristimulus vector into
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that plane loses only its whiteness component. Projecting the spectrum locus into the chromatic
plane gives the boomerang shape of Fig. 11. As a map of the chromatic component of stimuli,
this graph serves a function vaguely similar to that of a chromaticity diagram, but there is no line
of purples connecting 400 nm to 700 nm. To make purples with practical technology, one would
want to mix lights that have the needed stimulus amplitude within a power budget. The dashed
“line of practical purples” indicates such practical mixtures, and the “line of practical blue-
greens” shows hues that might better be made as mixtures rather than narrow-band lights. At this
time, I am not giving exact definitions for the dashed lines, but suggesting a general idea that can
be followed up as the need arises. If b and g are two vectors, then the constrained mixture xb +
(1!x)g plots along the straight line between them, so the dashed lines are the loci of unit power
mixtures.

Relationship to Cohen’s Approach.
Jozef Cohen emphasized that any light can be represented by its fundamental metamer, defined
as the linear combination of color matching functions that is metameric to the light. If two or
more lights have the same tristimulus vector—meaning that they match for the standard
observer—then they have the same fundamental metamer. The light’s actual spectral
distribution, say L1(8), minus the fundamental metamer, is a metameric black, a nonzero function
whose tristimulus vector is [0 0 0]T. We shall now see that tristimulus vectors based on the
orthonormal color matching functions are proxies for the fundamental metamers of the same
lights.

Cohen would find the fundamental metamer by using the projector matrix R, which is appealing
because R is invariant in the strongest possible sense. If any of the sets of cmfs in Fig 1 a-d, or
Fig. 9 are called f1, f2, f3, and A is a matrix whose columns are those vectors, A = [*f1, *f2, *f3,],
then

R = A[ATA]!1AT (11)

is the projector matrix and it is the same big array of numbers in every case. It is one array for
the 2° observer and a different array for the 10° observer, for example, but otherwise it is a fixed
arrangement of constants. If *L, is the spectral distribution of a light, and *L*, is its fundamental
metamer, then

*L*, = R*L,   . (12)

The fundamental metamer can also be found as a linear combination of the orthonormal cmfs:

*L*, = c1|T1, + c2*T2, + c3*T3,  . (13)

Applying the usual methods for finding the coefficients cj (See Appendix D) we find,

cj = +Tj*L,  , (14)
leading to

*L*, = |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (15)

In other words, the coefficients in the so-called orthogonal function expansion of *L*,, Eq. (13), 
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are the tristimulus values of L. The squared length of *L*, is +L**L*,. In Eq. (15), multiply the
RHS by its transpose, which gives 3 terms times 3 terms, then immediately apply
orthonormality, Eq. (8), +Ti*Tj, = *ij. We find

+L**L*, = +T1*L,
2 + +T2*L,

2 + +T3*L,
2  . (16)

Therefore, the length of the fundamental metamer is the length of the tristimulus vector. For
example, if the wavelength domain is 360 to 830 nm with 1 nm steps, there is a sum of 471
terms on the left, and a sum of 3 terms on the right. But the sums, the squared lengths of the
vectors, are the same. Or if L1, L2 are 2 different lights, the inner product of fundamental
metamers equals that of the tristimulus vectors:

+L1**L2*, = [+T1*L1, + +T2*L1, + +T3*L1,]   . (17)
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Further, the direction cosines are the same for the fundamental metamers and for the tristimulus
vectors, and therefore the angular relationships are the same. Therefore, the locus of unit
monochromats and related vector diagrams are the same whether they are intended to portray
fundamental metamers or tristimulus vectors.

Amplitude and Meaning.
Any tristimulus vector has meaning: it quantifies the stimulus based on the eye’s spectral
sensitivities. Using the orthonormal cmfs gives clearer meaning to tristimulus vector amplitude.
Referring to Eq. (15), the fundamental metamer, *L*,, is an approximation to the physical
stimulus *L,, and it is also that component of *L, to which color vision can respond. Consider 
|T1,+T1*L, as a component of *L*, . That is, we have a function |T1, scaled by the coefficient
+T1*L,. The component has a sum-squared value +T1*L,

2 which adds to the sum-squared values
of the other two similar components to give the sum-squared fundamental metamer. Therefore,
the tristimulus values individually are scaled to the stimulus, and so is tristimulus vector as a
whole. Adding the three components plus the fourth one, the metameric black, gives back the
physical stimulus *L,, and adding the sum-square values of the components plus that of the
metameric black gives the sum-squared value of the physical stimulus, +L*L,.

When tristimulus vectors are added vectorially, as in Fig. 10, an alert student might ask “How do
you know what scaling the retina applies in adding the components, what multiple of red-green
adds to achromatic?” The answer is, we don’t know. The vectors are scaled to the stimulus, and
vectorial color is about adding stimuli. Creating and adding stimuli is the goal of all color
technology, and vectorial color is about making better use of color matching data. Guth indeed
found vectorial addition in brightness experiments, but that is another matter.

Fig. 12 illustrates the notion of component functions. The solid black line is a standardized
daylight, D65. The maroon dot-dash line is the fundamental metamer of D65, which can be
called D65*. The green, red, and blue lines are the T1, T2, and T3 components which add up to
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the fundamental metamer. Finally, the gray dashed line is the metameric black, b = D65!D65*.
So, D65 is the sum of 4 components, and also the sum-square of D65 is the sum of the sum-
squared values of the 4 components. The result that the sum-square of a function, in this case a
light, equals the totaled sum-squares of the components, works only for orthogonal components.
In this case, if we call the tristimulus values cj as in Eq. (12), then

+D65*D65, = + +b*b,   . (18)c
j

j

2

1

3

=
∑

The explicit summation in Eq. (18) is a version of the matrix product in Eq. (17). Eq. (18) is a
specialized version of Parseval’s theorem.

Wavelengths of Strong Action
In the introduction and development above, reference is made to primary colors, colors that act
strongly in mixtures, and “longest vectors,” concepts that are not completely synonymous. The
idea that certain colors act strongly in mixtures can be traced to an article or two of MacAdam,
and to articles of William A. Thornton in the 1970s. The idea did not at first lead to a precise
definition, but various numerical experiments gave consistent results, showing that wavelengths
near 450, 540 and 610 nm act strongly in mixtures. Some uncertainty in the wavelengths of
strong action did not impair the practical importance of the idea. Thornton later coined the term
Prime Colors for the three wavelengths, and ultimately defined the Prime Colors as the least-
power primaries for a color matching experiment. The primaries in Fig. 1a are the Prime Colors
for the 2° observer; the primary wavelengths coincide with the peaks of the color matching
functions. At those wavelengths, the unit-power test light is matched by unit power of one
primary.

Thinking of vectorial color and the locus of unit monochromats, Fig. 10, we can ask which
wavelengths give a local maximum in radius from the origin. The question can be answered in 3
dimensions by considering the orthonormal cmfs as vector components, and finding the vector
length, then the peaks. Alternatively, one can compute Matrix R and then the vector length is the
square root of the diagonal of Matrix R, which again is vector length as a function of
wavelength, from which the peaks are found. It is also interesting to seek the peaks of radius in
the two-dimensional chromatic plane, Fig. 11. Table 2 shows results of such calculations.
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Table 2: Wavelengths of Strong Action in Mixtures.

2° Observer

Longest vectors in 3D are at: 445 nm 536 604

Longest vectors in 2D are at: 445 525 608

Prime colors = least power primaries = 446 538 603

10° Observer

Longest vectors in 3D are at: 445 535 600

Longest vectors in 2D are at: 445 521 606

Prime colors = least power primaries = 445 536 600

While the “longest vector” wavelengths come from simple manipulations with the orthonormal
functions, the prime colors come from color-matching Gedanken experiments or related
calculations.

Color Rendering
Most everyday objects do not emit light, so their tristimulus vectors result from a combination of
a light source’s spectral power distribution (SPD), the object’s reflectance, and a set of color-
matching functions. For example,

Vi =   , (19)
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where L is the light, si is the spectral reflectance of one surface and Vi is that surface’s tristimulus
vector. It is realistic to assume a single light L, but numerous surfaces si. The light L, and the
cmfs Tj , apply to all objects. If one light is substituted for another, L1÷L2, the color stimuli Vi in
general will change. The problem of Color Rendering is to describe the systematic effects of the
change L1÷L2, based on facts about color matching, lights, and objects. A vectorial approach can
cut through the seeming complexity.

First consider Eq. (19) and the single light L. The three groupings +Tj L*, the object color
matching functions, are the same across all surfaces. Now think about this a little further,
referring to Figures 10 and 11, and if possible to a VRML 3D drawing of the locus of unit
monochromats, such as http://www.jimworthey.com/locusunitmonochvr.html . Table 2 reminds
us of the strongly acting wavelengths, and the figures give a sense that the regions of strongest
action are well-defined. If two narrow wavelength regions dominate the creation of red and
green stimuli, then the power levels in those bands will be more important than other details of
the light’s spectrum L or the reflectances si.
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It was noted above that the “locus of unit monochromats” is the locus of fundamental metamers
of narrow-band lights, or the locus of tristimulus vectors. Yet another interpretation is that it is
the eye’s vectorial sensitivity as a function of wavelength. To call it “vectorial sensitivity”
emphasizes that there is a single independent variable, namely wavelength, but the response is
vectorial, having a direction and amplitude in color space. (To say “the eye’s sensitivity” is an
imprecise but hopefully intuitive reference to the stimulus calculation.) Rather than discuss the
groupings +Ti L* as three functions, we can think of them as a vector, scaled by the variable L(8):

L(8) = vectorial sensitivity ×SPD of light L. (20)
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This product is a function of wavelength, a vector-valued function that could be graphed in three
dimensions. Rather than make that graph, we jump ahead to another step.

In Fig. 13, the SPDs of two white lights are plotted.  The two lights have the same tristimulus
vector, in the orthonormal system or in XYZ for that matter. (Yes, a person could say that “the
lights have equal illuminance and chromaticity,” but let’s think more in vector terms.) One is a
light of poor color rendering, high pressure mercury vapor. The other is JMW daylight, adjusted
to make its tristimulus vector equal that of the mercury light. (The JMW daylight is a little
outside the stated domain of the JMW model.) The vertical dashed lines divide wavelength into
10 nm bands, except for a few wider bands at the ends of the spectrum. In most cases, the middle
of the band is a round-number wavelength.

For each 1-nm step in 8, Eq. (20) gives a small stimulus vector, and these can be added
vectorially within each wavelength band. The sum of those vectors is the tristimulus vector of
the light, and it is now interesting to add them graphically, Fig. 14. The simulated daylight gives
the smoothly arcing chain of arrows. Mixed long and short arrows distinguish the chain for the
mercury-vapor light, with the long components showing the wavelength bands where that light
radiates much of its power. The two chains end at the same point by design. A chain of three
components, somewhat arbitrarily colored gray, red, and blue, denotes the tristimulus vector of
either light, broken into its orthogonal components. The red-green component is positive, but
approximately zero.

Although the two lights have the same total stimulus vector, the mercury light takes a shortcut to
the final point, while daylight swings in the green direction, then back in the red direction. Now
imagine a strongly chromatic object, a red apple for example. To express its redness, it absorbs
blue, green and yellow, but reflects red. It selects just the reddest vectorial components from the
light, and attenuates other components. If we would say “it selects the red wavelengths,” that
would leave out colorimetry. But if we say that the apple selects the red vectorial components,
that statement includes colorimetry.

Discussions of color rendering are often burdened by hidden assumptions, leaving us to infer
what people are thinking. All would acknowledge that a light’s stimulus vector can be found, the
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three numbers plotted as gray, red, and blue. Then people seem to assume that the information
from simple colorimetry has been used up. The method just developed, based on narrow bands
and vectorial addition, shows the sameness of the two lights, that they give the same total
stimulus vectors. Within the one presentation, it also shows how they differ: the mercury vapor
light lacks red and it lacks green. To relate the vectorial graphs to vision of colored objects, one
must make the popular assumption that object reflectances are spectrally smooth, so that the 10-
nm steps do not conceal an intricate interaction between the light’s spectrum and the reflectance.
The graphs could be drawn with 1-nm jumps, and the computer programming would be easier,
but the arrowheads would be too numerous. In any case, the vector sums are not a rigid
“method” to be used blindly, but an explanation of color rendering in terms of basic science.

Moment of Reflection. What is a vectorial method for colorimetry? Why have we not seen
anything like the addition of stimulus vectors in Fig. 14? One may recall how vectors are used in
basic physics or engineering. Vectors may be added, but a vector may also be decomposed into
components. The numerical work is simple, but there is not a single “vector method” for the
student to memorize. Vector operations are used as appropriate, relating what’s known to what
isn’t. A vectorial treatment of color stimuli exploits the linearity of color
matching—Grassmann’s laws. We routinely add vectors (X, Y, Z), but there are problems:
1.) The functions  x6, y6, z6 are not orthogonal. Stimuli which plot at right angles have fundamental
metamers that are not orthogonal. Angles between stimuli in XYZ space are arbitrary, and in fact
vector directions are arbitrarily squeezed together. (The overlap of cone sensitivities brings
stimuli together, as modeled by the locus of unit monochromats. The XYZ system applies a
further arbitrary squeeze.)
2.) Component amplitudes X, Y, and Z are arbitrarily scaled.
3.) The XYZ axes have a murky relationship to the intuitive color concepts of red, green, and
blue.
4.) By tradition, we rush to calculate and graph (x, y), which is not a vector.
The orthonormal basis solves these problems, allowing and encouraging us to work with
stimulus vectors.

Discussion
Working-class summary. An alert reader may ask, “So, you are selling a new set of color
matching functions. At one point you seek the wavelengths where receptor sensitivities are the
‘most different,’ and that is interesting. But in the end, what do you have that is new?” If we
consider x6, y6, z6, Fig. 1c, as the “old” functions, then T1 is a multiple of y6, so it is not new. The
third orthonormal function, T3, is really a blue function with a little extra variation, therefore it is
little different from the old z6, Fig. 15. So, 2/3 of the “new” system is similar to the old system.
The remaining old function is x6, an arbitrary magenta primary. The orthonormal system replaces
x6 with the red-green opponent function, T2, allowing the axes to have intuitive meanings,
namely white, red or green, and blue or yellow. Fig. 15 also compares x6 to T2. The new system
is an opponent-color scheme whose greatest benefit is to resolve the overlapping red and green
cones into functions  that are more independent, and indeed orthogonal. Only a few narrow-band
stimuli will actually plot in the yellow (minus blue) direction, but the range of possibilities from
yellow through shades of white to blue is nicely spread out in the v1-v3 plane. Any set of color-
matching functions can map stimuli to vectors. Thanks to orthonormality, the new cmf’s spread
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out the vectors as much as possible.
Locus of Unit Monochromats. Jozef Cohen started with Wyszecki’s idea, to break any SPD
into a metameric black, orthogonal to all three cmf’s, and the fundamental metamer, which is a
linear combination of the cmf’s. A light and all its metamers share one fundamental metamer,
which is a non-arbitrary proxy for the group. Although the fundamental metamers are functions
of wavelength, 471-vectors perhaps, they map to 3-vectors. Each unit-power narrow-band light,
or “monochromat” in Cohen’s usage, thus maps to a point on the Locus of Unit Monochromats.
The reference to “unit power” calls attention to the vector lengths: wavelength governs direction
and amplitude. The too-familiar chromaticity (x, y) by itself quantifies direction but loses
amplitude. Choosing the orthonormal functions also establishes axes, and it was found above
that a three-component stimulus vector in the orthonormal system has the same direction and
amplitude as the related fundamental metamer. Vector amplitude has the meaning of “strength of
action in mixtures,” a concept that is near the surface in color-matching experiments, but was
particularly called to our attention by Thornton (as well as MacAdam).
Vectorial color. In Fig. 14, the vector chain gray-red-blue stands for the familiar operation in
which three sums over the visible spectrum give a light’s tristimulus values. That’s very well,
but summing every time over the whole spectrum loses the peaks and valleys that distinguish the
one light from another. The other chains in the figure come from rearranging the sum: choose a
wavelength band, collect the terms for that band from each larger sum, treat three partial sums as
a vector. The vector then has a direction in color space and an amplitude; from the abstraction of
“wavelength bands” comes something more concrete: stimulus vectors. Isaac Newton said the
rays are not colored, but he didn’t have computer graphics. The linearity of retinal transduction
permits us to draw colored arrows, if not rays, and see exact meanings in the results.
Cause and effect. The best cause-and-effect reasoning is at work when a phenomenon is
described by simple laws, especially linear laws like F=ma and methods that assume linearity,
such as vectors. One then computes “the answer” and words such as “effect” are seldom used.
The facts of color vision present themselves in a certain way, as functions of wavelength, Fig. 1.
Linearity is implicit in any calculation when we compute (SPD)×(sensitivity) at each
wavelength, then add those contributions. The XYZ formulas exploit linearity to predict
matching lights or paint chips, but the arbitrariness of X, Y, Z deters the use of vector diagrams.
Losing vectors means losing cause and effect. Consider the problem of color rendering. Where
does the problem arise, at the linear stage or later? Fig. 14 confirms what has been said before:
the problem involves systematic differences between lights, and arises in the linear stage where
cause and effect can be made clear. The traditional color rendering method is full of arbitrary
elements such as the 8 color chips, but its problems go deeper. It is based on an assumption that
the problem is hopelessly complex: color shifts might be random or might be systematic; maybe
the object colors are important; maybe nonlinearity of perception is important. We don’t know
and it’s beyond hope that we could find out, so we had better allow for all possibilities. The XYZ
system generates this pessimism by cutting short the discussion of linear events.
Terminology. In Fig. 1b, we see the great overlap of the red and green cone sensitivities, and the
lesser overlap of blue with green or red. Adding and subtracting such functions gives the
surprising variety seen in Fig. 1 and Fig. 9. Assuming that the retina somehow compares red and
green signals, overlapping sensitivities permit the gradual variation of hues that we experience,
even with narrow-band lights. College professors, finding their students confused about hue
variation from three receptors, and other subtleties, often call the receptors long, middle, and
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short. I take a different view. The names red, green, and blue appeal to intuition at any
educational level. The complexity of color vision begins with overlap, a concrete fact that can be
discussed and taught to students. The orthonormal basis deals with overlap by use of an
opponent-color scheme, leading to the Locus of Unit Monochromats, an intuitive embodiment of
trichromatic theory. The orthonormal basis is not a physiological model, but it offers a rational
color space in which color science concepts such as unique hues, or Guth’s functions, Fig. 1d,
can be represented by vectors.
Lighting. Lighting books begin with discussions of luminous flux, treating light as a liquid and
tossing aside the roles that optics and color play in making a light useful. Eschewing even the
1931 color-vision observer, they base their discussion on the one-dimensional 1924 observer: the
y6 function alone. Summarizing Cohen’s and Thornton’s ideas as evolved in this article, we can
acknowledge color vision by saying that light is three liquids. Thornton invented names for
them: rubinosity, verdinosity and bluminosity. If the light supplies less than a normal dose of
power in the regions near the prime colors (Table 2), color contrasts are diminished. Calling for
three liquids is a clumsy simplification, but less clumsy than the one-liquid model. Apart from
color, the over-riding optical issue is the light’s area or luminance. Area and luminance must
vary inversely for a given luminous flux. Optics teaches that luminance can diminish but not
increase; no “optical funnel” can focus light from a fluorescent tube into a narrow spotlight
beam.
Chromaticity. A version of chromaticity could be defined for the orthonormal space. The
vectors comprising the locus of unit monochromats would be projected outward to meet a certain
plane, creating a spectrum locus that maps direction but not vector amplitude. Other stimulus
vectors could be projected to that plane, again losing their amplitude. The task of defining such a
diagram is left for the future. For now, we have an opportunity to forget chromaticity and think
about vectorial color.
Math. The orthonormal basis resembles prior opponent color models, but is not the same. One
may ask how the orthonormal system, relying heavily on mathematical ideas, can presume to
supersede a physiological model based on “real data.” A two-part answer can be given:
1. A physiological model and the orthonormal basis are answers to different questions. There is
no need for them to be the same.
2. Choosing an orthonormal set of color matching functions allows perpendicular stimulus
vectors to represent independent variations of the stimulus, conforming to the usual notion of
vectors. The invariant locus of unit monochromats emerges, revealing the strong-acting red,
green and blue Prime Colors. Thus, linear matching data point to a special status for red and
green, which in turn points the way toward opponent colors.
Critical tests. When a version of vectorial color was presented orally, one audience member
asked what would be a critical test of the theory. The answer I gave then was “television
phosphors.” A vectorial picture (Figs. 10, 11 and 14) shows why additive primaries are red,
green, and blue (Figs. 1a, 3 and 4). That is one critical test. The test must involve more than a
single color match, because the orthonormal functions are a transform of the CIE’s 2-degree
observer functions, and predict the same matches; see Appendix A.

In the XYZ scheme, no two of the cmfs are orthogonal, and in particular when X and Y are
measured for a population of lights or paint chips, they will tend to be correlated because of the
overlap of  x6 and y6. (Direction cosine of x6 and y6 = 0.760 .) The components of V, Eq. 10, will
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tend to be less correlated and therefore more helpful in the context of measurement and quality
control. If derived quantities involve adding or multiplying measured values, simple formulas
will apply for error propagation so long as the measurements can be assumed independent;
otherwise there is an onerous requirement to estimate various measures of correlation.
[NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/ , 2006.]

Cohen’s space is a logical one for adding and graphing vectors, as in Fig. 14. The color
rendering example above, and similar ones, will aid understanding of lights that are similar in
their total tristimulus vector, but different in their detailed makeup. The opponent feature of the
orthonormal cmfs helps with color naming, but it has other less obvious uses also. A separate
short article presents realistic “Applications of Vectorial Color.”

Historical development. This article shows that expressing the facts of color matching in
orthonormalized opponent functions yields benefits for the understanding of color. Readers may
ask how such an idea was developed. The answer is very much in the open literature. Cohen
studied dependency of spectral reflectances, which led him to think about dependency of color
matching functions, and ultimately about Matrix R. Thornton started out with engineering
calculations to improve fluorescent lamps, which led him to the Prime Colors, which he then
studied through many published articles. Cornsweet showed the role of overlap and emphasized
discussing color without the CIE’s concepts. Michael H. Brill contributed theorems and
collaborations. Sherman Lee Guth offered the idea of a simple opponent model. I began by
combining Thornton’s and Guth’s ideas. I found uses for opponent colors as a calculation tool.
Buchsbaum derived a set of orthonormal opponent cmf’s. In a recent article on color rendering, I
sketched the outlines of a relationship of Prime Colors, opponent colors, and Matrix R. In the
next article I used orthonormal opponent functions, but only as a tool, an important middle step.
The final sentences of that article reveal a last-minute discovery: that Matrix R is the same as a
unity operator made from an orthonormal basis. See Appendix D below.  After that insight,
some work with computer graphics was important in moving from the abstract idea of
orthonormal color matching functions to a better understanding of practical benefits.

In 1998 I was contemplating the work that became Reference __. Thornton suggested that I not
use Guth’s 1980 model directly, but make a version consistent with one of the CIE observers. I
have followed that advice since and now it blossoms into a larger idea. Figure 1, for example,
shows cmf’s that are linear transformations of each other, but have differing interpretations.
Even Fig. 2 shows pseudo-historical graphs, similar to the Wright and Guild data, but based on
the 2° observer. The use of consistent functions is not new, and indeed it is part of the 1980 Guth
model. Still, basing all development on the CIE’s smooth functions helps to separate
measurement issues from algebraic ones. The opponent-orthonormal schema can then
incorporate revised data, Appendix C, or even be applied to alternate systems such as cameras.

In order to use the orthonormal basis, it is not necessary to review all the historical development.
To the contrary, a stimulus vector is calculated from the orthonormal cmf’s as from any other set
of color matching functions, Eq. (10). A person can then see the benefit of the orthonormal and
vectorial methods by working with them. I praise the contributions of Brill, Cohen, Guth,
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Thornton and others (alphabetical order!). Their childhood homes should become shrines visited
by schoolchildren. While we wait for that to happen, we can honor them by using the
orthonormal opponent color matching functions, a simple embodiment of their hard work and
clever ideas. The vectorial schema will be so logical that people will feel as if they always knew
it, that it must have a simple history. When nobody can imagine that hard research was needed,
that will honor their thorough work.

Conclusion
So-called color-matching data, the foundation of colorimetry, derive from experiments in which
lights are added. Conceptually, three primaries are adjusted so that their sum matches a test light.
Color technologies are much like the basic experiments: primary colors vary in power, but not in
the shape of their spectral distributions. Even the viewing of colored objects under a white light
fits this model: the primaries are the narrow bands within the spectrum (Figure 13) which add to
give the white light (Figure 14). Colors add linearly, which should aid analysis and permit vector
diagrams. Unfortunately, in the 20th century colorimetry became tied to the XYZ scheme. In the
CIE’s method, tristimulus vectors in the form [X Y Z] put arbitrary non-orthogonal quantities on
the axes and squeeze together the cone of color vectors, discouraging any thought of vector
diagrams. In the transition to chromaticity (x, y), color vectors are subject to a central projection
which preserves direction but loses amplitude. Most color discussions then involve (x, y).

As the XYZ schema is used, it is slanted toward quality control. A test piece, such as a colored
signal light, is measured with a spectroradiometer. In one step then, a computer converts the
spectrum to three numbers such as (Y, x, y). The numbers emerge as from a black box, because
the intermediate values X, Y and Z lack intuitive meaning. (Y has meaning, but not about color.)
In the mid-twentieth century, the numbers were a boon and gave objectivity to users of signal
lights and paints. In the pre-computer era, it was a serious task to “grind out” such a calculation,
and the pencil-worker was thankful for the lack of negative numbers. But also in the
mid-twentieth century, fluorescent lights and color television were invented, and other color
technologies evolved. Considering color television, for example, it is not enough that an artist
chooses lavender, lilac and aqua phosphors, and then the engineer does quality control. The
engineer must be a jump ahead of the artist and pick three colors that are strong and dissimilar so
that their mixtures will be diverse. As Thornton discovered, information about the strong and
dissimilar colors of human vision is near the surface in the data of a color matching experiment,
Fig. 1a. It is obscured by the XYZ system, but easily applied using the orthonormal basis and
Cohen's space.

For lack of a good vector representation, the XYZ schema engenders low expectations. Signal
lights are discussed rationally, but when a white light shines on some objects no clear insight is
offered. Color rendering is treated as mysterious, yet dull. In fact, color rendering is about how
white lights work, a basic topic. In Fig. 14, consider the chains of vectors for the two lights. The
component arrows in each chain are calculated directly by colorimetry, based on the partitioning
into wavelength bands, Fig. 13. No approximation or hidden assumption is needed, just vector
methods which embody the trichromatic theory.
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Appendix A, How Different Sets of Cmf’s Can Predict the Same Matches
If one set of color matching functions (cmf’s) is known, other sets can be derived from it that
predict the same matches. Suppose that the starting set of cmf’s form the 3 columns of a matrix
Q0, perhaps representing the data from a color matching experiment:

Q0 = [|r, |g, |b,]  . (A1)
Then two spectral power distributions L1 and L2 are expected to match if

Q0
TL1 = Q0

TL2  . (A2)
Superscript T means matrix transpose. Eq. (A2) is an equality of tristimulus vectors. Now define
a transformed set of cmf’s Q1:

Q1
T  = X Q0

T  , (A3)
where X is an invertible (non-singular) 3×3 matrix. (X is a transform, not related to the XYZ
system.) Let Eq. (A2) be multiplied on both sides by X,

XQ0
TL1 = XQ0

TL2, (A4)
then apply Eq. (A3) to conclude that

Q1
TL1=Q1

TL2  . (A5)
Since X is invertible, multiplying Eq. (A5) by X!1 gives back Eq. (A2), all steps are reversible
and Eqs. (A2) and (A5) are equivalent.

Appendix B, Relationship to Guth’s 1980 Model.
If one were to poll Sherman Lee Guth and his former students, one might find that the concepts I
take from his work differ from the ideas he had in mind in 1980. In fact, it has been a theme of
my career to apply Guth’s 1980 model as a mathematical tool, in ways that he did not intend.
Opponent concepts prove valuable for understanding the linear stage of color vision, the stage of
transduction and of color matching, prior to the stage that Guth intended to study. In this article,
I stray especially far from his vision, adding and subtracting his functions to make orthonormal
ones.

Emphasizing the evolution of thought, rather than formulas, the notion of orthonormalizing
Guth’s functions arises like this:
1. Guth conformed his opponent functions to the familiar facts of color matching by starting with
2° observer functions,  x6, y6, z6. He used a “slightly modified” 2° observer, but I use the official
CIE 1931 functions with his formulas. In two steps, he gave formulas for cone sensitivities (from
Smith and Pokorny), then subtracted the cone signals to give opponent signals. When we
recognize that receptor-sensitivity overlap is a central theme of colorimetry, then Guth’s 1980
model is charming and simple because:

a. The achromatic function, a multiple of y6, is a sum of the red and green signals, with
certain coefficients. It has no blue input.

b. The red-green signal is red minus green only, with specified coefficients, no blue
input. Thus, the red-green signal involves only the most-overlapping pair of cones.

c. The blue-yellow signal is blue minus red only, with coefficients, no green input. This
signal involves only the least-overlapping pair of cones.
2. Guth normally discussed his functions in the sequence achromatic, red-green, and blue-yellow
(symbols a6, t6, d6). One may notice that:

a. Opponent functions such as Guth’s look like they might be orthogonal functions.
b. They are sequenced in a way that would be natural if they were orthogonal, namely the
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all-positive function first, then two functions that cross the abscissa and go negative over part of
the wavelength domain.

c. The functions are the two highly overlapping cones (red and green) added; then the
same cones subtracted; then the two least overlapping cones (blue and red) subtracted.
3. So, we are perhaps disappointed that Guth’s functions are not orthogonal.

a. However, it is logical to apply the Gram-Schmidt procedure, keeping the functions in
the order achromatic, red-green, blue-yellow.

b. When Gram-Schmidt is applied in this way, the achromatic function is renormalized,
but otherwise unchanged. The achromatic function was a re-scaled y6, and it is still a re-scaled y6
in our orthonormal set.

c. The red-green function is changed, to make it orthogonal to y6, but because of the step-
by-step nature of the Gram-Schmidt procedure, the orthogonalized red-green function still has
the Guth-like property of no blue input. It is still red minus green, but the exact coefficients are
new.

d. Finally, the blue-yellow function in the orthonormal set is the least Guth-like, with
contributions from all 3 cones.

In the main text, the orthonormal set was found, in effect, by starting with the set {y6, red cones,
blue cones} and applying Gram-Schmidt. The resulting functions are the same, with the same
connection to Guth’s 1980 model.

Appendix C, Smooth Cone Sensitivity Functions and Other Calculations.
In the body of this article, any “achromatic sensitivity” is a multiple of the CIE’s y6 for

the 1931 2° Observer, and any “cone sensitivity” is a linear combination of  x6, y6, and z6 for the
2° Observer. One reason for using the CIE functions in this way is that they are (unofficially)
available as smoothed functions, tabulated at 1-nm wavelength steps. One may ask, how much
difference would it make to have a different starting point, such as the more recent Stockman
and Sharpe receptor sensitivities? In fact, it makes little difference, but it will be instructive to
work out the comparison.

The derivation of the orthonormal cmf’s required, as a starting point, a set of cone
sensitivities and the relationship between cone functions (Figure 1b) and the whiteness function
y6 (Fig. 1c or 1d). Equations (C1) and (C2) serve to concoct the red, green and blue cone
functions:
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The bra notation, such as +r6*, says that the functions are written as row vectors; they become the
rows of the larger matrices. Eqs. (C1) and (C2) are taken from Guth, but slightly misapplied,
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since he intended that they be used with Judd’s slightly modified x6, y6, z6, deemed more accurate.
Putting aside the Judd functions, suppose that the Stockman and Sharpe cone primaries

are to be used. Let them be written as column vectors, |rSS,, |gSS,, |bSS,. Now, using the
assumption that achromatic sensitivity involves only red and green cones, let A = [|rSS, |gSS,] and
construct a projector matrix Rrg for the 2-dimensional space of these receptors:

Rrg = A(ATA)!1AT  . (C3)

If |y6, is the usual achromatic function, and |y6rg, is to be the best fit to |y6, in the 2-dimensional
space, then

|y6rg, = Rrg |y6,   . (C4)

Now recall the scheme of the smooth orthonormal functions used earlier. That is, the first
function was proportional to |y6,, the second function was a different linear combination of red
and green cones, orthogonal to |y6,, and the third function involved all 3 cones. If we form a
matrix [|y6rg, |rSS, |bSS,] and perform Gram-Schmidt orthonormalization on the columns of this
matrix in sequence, the result will be a new orthonormal basis comprising linear combinations of
the Stockman and Sharpe primaries:

[|y6rg, |rSS, |bSS,] ÷ by Gram Schmidt ÷ SSS  , (C5)

where SSS is the new orthonormal set. Figure C1 shows the fit of the less smooth basis to the
smooth one. At worst, one can say that the smooth functions differ little from more exacting
modern ones. At best, the smoother functions convey the “big story” better. In Fig. C1, the
smoother functions based on the interpolated 2° Observer are shown as gray dashed lines, while
those based on the Stockman and Sharpe primaries are the thinner black lines.

The calculation just done combines two methods—Matrix R, and Gram-Schmidt.
Suppose now that a spectral power distribution is given, and one seeks its projection into the
vector space of color matching functions, its fundamental metamer. There are (at least) two
paths:
1.  One path uses the logic of Fourier series. Orthonormal color matching functions are available,
or can be created by the Gram-Schmidt procedure. Coefficients are calculated by the proper
simple formulas, and the original SPD is approximated by a 3-term series, as in the beginning of
Appendix D.
2. By the alternate path, a projector matrix R is calculated, then the approximation to the SPD is
calculated by a single final matrix multiplication, similar to Eqs (C3) and (C4), but with 3
column vectors in matrix A.

The resulting vectors—projections of the SPD—will be the same, within some roundoff
error. In both cases, the projection into the vector space of color matching functions is the least-
squares best fit to the SPD by a linear combination of cmf’s. For the one task, path 2 may be
more convenient, but if the numerical coefficients are needed, then path 1 generates them as a
byproduct. A decade or two ago, a practical person might have noticed that R can be an
extremely large matrix (up to 1.8 MB as double precision) and the path via Gram-Schmidt is the
more efficient. With today’s computer hardware, the occasional inefficient algorithm does no
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harm. Any logical method may be used, perhaps followed by other steps for checking.
Suppose that S has just been calculated, a matrix whose columns are intended to be

orthonormal functions. By the orthonormal property, one should find STS = I, where I is a small
identity matrix, 3×3 for example. This property, that STS = I, simplifies the formula for
projector matrix R, such as Eq. (C3). That is,

R = SST ,  only when columns of S are orthonormal. (C6)
If the functions S are linear combinations of some other functions, such as a particular set of
cone sensitivities, then the Matrix R in Eq. (C6) should be numerically the same as found by
Cohen’s formula, R = A(ATA)!1AT, based on the original functions. The computer can subtract
the two versions of R, then search the difference matrix for the greatest absolute discrepancy.
Applying this checking calculation to the two versions of R based on Stockman and Sharpe
cones gives a maximum difference of 3×10!16. For comparison, the mean absolute value of an
element of R in this case was 1.4×10!3.

Appendix D, Fun with Orthonormal Functions

This appendix is really about notation and convenient calculation. The ideas are the well-known
facts of generalized Fourier series. Suppose that {|T1,, *T2,, *T3,} are a set of functions that are
orthonormal:

+Ti*Tj, = *ij    . (8)

To be concrete we envision a set of 3 functions of wavelength, but there could be any number of
functions over any domain. Now consider a function *L,, which could be the spectral power
distribution of a light. We want to approximate *L, by a linear combination of the functions |Ti,:

*L, . c1|T1, + c2*T2, + c3*T3,  , (D1)

where the cj are constant coefficients. We seek a formula for c1. Multiply Eq. (D1) on the left by
+T1*:

+T1*L, . c1 +T1|T1, + c2 +T1*T2, + c3 +T1*T3, . (D2)

By orthonormality, Eq. (8), +T1*T2, = +T1*T3, = 0, and +T1|T1, = 1. Then c1 = +T1*L,. In general,
cj = +Tj*L,  , (D3)

and then substituting Eq. (D3) into Eq. (D1) leads to

*L, . |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (D4)

By reasoning not reviewed here, the sum on the right in Eq. (D4) is the linear combination of
|T1,, *T2,, *T3, that is the least-squares best fit to *L,. That is also a description of the
fundamental metamer of *L,, denoted by *L*,. Therefore,

*L*, = |T1,+T1*L, +*T2,+T2*L, +*T3,+T3*L,  . (D5)
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(Why is ‘.’ gone in Eq. (D5)? Because the fundamental metamer is the approximation.)
Factoring the RHS of Eq. (D5) yields

*L*, = (|T1,+T1* +*T2,+T2* +*T3,+T3*)*L,  , (D6)
or,

*L*, = *L,  . (D7)ω ωj
j

j
=
∑










1

3

The sum in parentheses is called a unity operator, , and could have N terms:

 =     . (D8)ω ωj
j

N

j
=
∑
1

Comparing Eq. (D7) to Eq. (10) shows that the unity operator performs the same function as
projector matrix R, and suggests that it is Matrix R. Recall that |Ti, is a column matrix and +Tj*
is a row matrix, so |Ti,+Tj* is a large square matrix. The sum within the matrix multiplication is
implicit; the sum from j=1 to N is separate and indicates the sum of N large square matrices. So

 is a large square matrix like R, it is not yet proved that they are equal.

Postponing that proof, why do we need a different symbol and formula for R, Eq. (D7)? We
need the unity operator not as a formula for the projector matrix, but as a shorthand way to
derive equations like Eq. (D4) or (D5), which include explicit formulas for the coefficients, as in
Eq. (D3). Now letting N=3, we notice an alternate way of writing Eq. (D8):

 =    . (D9)[ ]ω ω ω
ω
ω
ω

1 2 3

1

2

3

















In this case, the summation implicit in the matrix product is the one written explicitly in Eq.
(D8). It is natural to write the orthonormal set as the columns of a matrix S, that is

S = [|T1, *T2, *T3,]    . (D10)

Therefore
 = S ST. (D11)

Now the formula for R holds for any transformed set of color matching functions, so substitute
A = S in Eq. (9):

R = S[STS]!1ST   . (D12)
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But the grouping STS, because of orthonormality, is the 3×3 identity matrix:

STS = I3×3   , (D13)

whose inverse is also the identity matrix, therefore

R = SST   . (D14)

Comparing Eq. (D11) to Eq. (D14) confirms that R =  .

The key idea of this appendix is contained in Eq. (D4) or (D5), or in Eq. (D8) or (D9), which are
tools for deriving those equations. Eq. (D3) is the explicit formula for the coefficients. If the
summation notation of Eq. (D8) seems awkward, Eq. (D9) can be used to derive formulas. For
example, *L*, = *L,, then

*L*,  = *L,    . (D15)[ ]ω ω ω
ω
ω
ω

1 2 3

1

2

3

















On the RHS, three matrices are multiplied. Formally multiplying the second and third matrices
gives

*L*,  =      . (D16)[ ]ω ω ω
ω
ω
ω

1 2 3

1
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Formal multiplication in Eq. (D16) then gives Eq. (D5), the desired result. A further succinct
insight is that STS = I3×3, Eq. (D13), but if the order of multiplication is reversed, SST = R, Eq.
(D14).

Application. Suppose that we seek the relationship between the orthonormal vectors, S, and
Guth’s opponent functions (renormalized as in Fig. 1d). Call the array of Guth’s vectors G. Then

G = G  . (D17)

In Eq. (D17), there is equality and not approximate equality because we know that the Guth
color matching functions are linear combinations of the columns of S. Apply Eq. (D11):

G = S ST G  . (D18)

A realistic situation is assumed: that G and S exist on a computer as arrays of numbers. It might
be that  S was just found from G by the Gram-Schmidt algorithm. We now seek a 3×3 matrix
that is the transform from one to the other. All that we need to do is group the terms. Define X =
ST G. Then G = S X, and S = G X!1. The inverse may be the more interesting. Numerically,
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X!1 =    . (D19)

1 03433 06442
0 10573 02706
0 0 11726

. .

. .
.
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


We can then see that the first vector of S is the same as the first vector of G. The second vector
of S is a combination of the first 2 vectors in G, the ones that depend only on red and green
cones, and S’s third vector is a combination of all the Guth vectors. The same approach,
beginning with Eq. (D17) could be used to find other relationships, such as S in terms of  x6, y6,
z6. To emphasize individual functions, Eq. (D9) can be used for the unity operator.


